February 3, 2023

Publications 2022

Publications acknowledging WheatCAP support

This document is also available as a PDF file.

You can also follow our publications in our Google Scholar profile.

  1. Alarcón-Reverte R, Xie Y, Stromberger J, Cotter JD, Mason RE, Pearce S (2022) Induced mutations in ASPARAGINE SYNTHETASE-A2 reduce free asparagine concentration in the wheat grain. Crop Science 62:1484–1496. https://doi.org/10.1002/csc2.20760 
  2. Baenziger PS, Frels KA, Boehm J, Belamkar V, Rose DJ, Xu L, Wegulo SN, Regassa T, Easterly AC, Creech CF, Santra DK, Klein RN, Jin Y, Kolmer J, Chen MS, Guttieri MJ, Bai G, El-Basyoni Salah I, Masterson SD, Poland J (2022) Registration of ‘Epoch’ hard red winter wheat. Journal of Plant Registrations 16:613–621. https://doi.org/10.1002/plr2.20247 
  3. Chen H, Su Z, Tian B, Liu Y, Pang Y, Kavetskyi V, Trick HN, Bai G (2022) Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnology Journal 20:1018–1020. https://doi.org/10.1111/pbi.13819 
  4. Chen H, Su Z, Tian B, Hao G, Trick HN, Bai G (2022) TaHRC suppresses the calcium-mediated immune response and triggers wheat Fusarium head blight susceptibility. Plant Physiology 190:1566–1569. https://doi.org/10.1093/plphys/kiac352 
  5. Chen Y, Liu Y, Zhang J, Torrance A, Watanabe N, Adamski NM, Uauy C (2022) The Triticum ispahanicum elongated glume locus P2 maps to chromosome 6A and is associated with the ectopic expression of SVP-A1. Theor Appl Genet 135:2313–2331. https://doi.org/10.1007/s00122-022-04114-y 
  6. Chu C, Wang S, Rudd JC, Ibrahim AMH, Xue Q, Devkota RN, Baker JA, Baker S, Simoneaux B, Opena G, Dong H, Liu X, Jessup KE, Chen MS, Hui K, Metz R, Johnson CD, Zhang ZS, Liu S (2022) A new strategy for using historical imbalanced yield data to conduct genome-wide association studies and develop genomic prediction models for wheat breeding. Mol Breeding 42:18. https://doi.org/10.1007/s11032-022-01287-8 
  7. Dang C, Zhang J, Dubcovsky J (2022) High-resolution mapping of Yr78, an adult plant resistance gene to wheat stripe rust. The Plant Genome, 15: e20212. https://doi.org/10.1002/tpg2.20212 .
  8. Debernardi JM, Woods DP, Li K, Li C, Dubcovsky J (2022) MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genetics, 18: e1010157. https://doi.org/10.1371/journal.pgen.1010157.
  9. DeWitt N, Guedira M, Murphy JP, Marshall D, Mergoum M, Maltecca C, Brown-Guedira G (2022) A network modeling approach provides insights into the environment-specific yield architecture of wheat. Genetics 221(3) iyac076. https://doi.org/10.1093/genetics/iyac076
  10. Fan M, Zhang X, Nagarajan R, Fan M, Zhang X, Nagarajan R, Zhai W, Rauf Y, Jia H, Ma Z, Yan LL (2022) Natural variants and editing events provide insights into routes for spike architecture modification in common wheat. The Crop Journal. https://doi.org/10.1016/j.cj.2022.04.009 
  11. Gill HS, Halder J, Zhang J, Rana A, Kleinjan J, St. Amand P, Bernardo A, Bai G, Sehgal SK (2022) Whole-genome analysis of hard winter wheat germplasm identifies genomic regions associated with spike and kernel traits. Theor Appl Genet 135:2953–2967. https://doi.org/10.1007/s00122-022-04160-6 
  12. Glenn P, Zhang J, Brown-Guedira G, DeWitt N, Cook JP, Li K, Akhunov E, Dubcovsky J (2022) Identification and characterization of a natural polymorphism in FT-A2 associated with increased number of grains per spike in wheat. Theor Appl Genet 135:679-692. https://doi.org/10.1007/s00122-021-03992-y 
  13. He F, Wang W, Rutter WB, KW Jordan, Ren J, Taagen E, DeWitt N, Sehgal D, Sukumaran S, Dreisigacker S, Reynolds M, Liu S, Chen J, Fritz A, Cook J, Brown-Guedira G, Pumphrey M, Carter A, Sorrells M, Dubcovsky J, Hayden MJ, Akhunova A, Morrell PL, Szabo L, Rouse M, Akhunov E (2022) Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nat Commun 13:826. https://doi.org/10.1038/s41467-022-28453-y 
  14. Jiang D, Hua L, Zhang C, Li H, Wang Z, Li J, Wang G, Song R, Shen T, Li H, Bai S, Liu Y, Wanga J, Li H, Dubcovsky J, Chen S 2022. Mutations in the miRNA165/166 binding site of the HB2 gene result in pleiotropic effects on morphological traits in wheat. The Crop Journal. Online first. https://doi.org/10.1016/j.cj.2022.05.002 .
  15. Kissing Kucek L, Dawson JC, Darby H, Mallory E, Davis M, Sorrells ME (2021) Breeding wheat for weed-competitive ability: II–measuring gains from selection and local adaptation. Euphytica 217:203. https://doi.org/10.1007/s10681-021-02905-w 
  16. Kissing Kucek L, Mallory EB, Darby HM, Dawson JC, Sorrells ME (2021) Breeding wheat for weed-competitive ability: I. Correlated traits. Euphytica 217:202. https://doi.org/10.1007/s10681-021-02930-9 
  17. Kuzay S, Lin H, Li C, Chen S, Woods D, Zhang J, Dubcovsky J (2022) WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLOS Genetics 18:e1009747. https://doi.org/10.1371/journal.pgen.1009747 
  18. Larkin DL, Mason RE, Moon DE, Holder AL, Ward BP, Brown-Guedira G (2021) Predicting Fusarium Head Blight Resistance for Advanced Trials in a Soft Red Winter Wheat Breeding Program With Genomic Selection. Frontiers in Plant Science 12. https://doi.org/10.3389/fpls.2021.715314 
  19. Li H, Zhang F, Zhao J, Bai G, St. Amand P, Bernardo A, Ni Z, Sun Q, Su Z (2022) Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theor Appl Genet 135:1867–1877. https://doi.org/10.1007/s00122-022-04080-5 
  20. Lopez SR, Wiersma AT, Strauss NM, Watkins T, Baik BK, Zhang G, Sehgal SK, Kolb FL, Poland JA, Mason RE, Carter AH, Olson EL (2022) Description of U6719-004 wheat germplasm with YrAS2388R stripe rust resistance introgression from Aegilops tauschii. Journal of Plant Registrations: https://doi.org/10.1002/plr2.20226 
  21. Luo J, Rouse MN, Hua L, Li H, Li B, Li T, Zhang W, Gao C, Wang Y, Dubcovsky J, Chen S (2022). Identification and characterization of Sr22b, a new allele of the wheat stem rust resistance gene Sr22 effective against the Ug99 race group. Plant Biotechnology Journal. 20: 554–563. https://doi.org/10.1111/pbi.13737.
  22. Morales N, Ogbonna AC, Ellerbrock BJ, Bauchet GJ, Tantikanjana T, et al. (57 co-authors including Jean-Luc Jannink, Clay Birkett, and David Waring) 2022. Breedbase: a digital ecosystem for modern plant breeding. G3. https://doi.org/10.1093/g3journal/jkac078 
  23. Moriconi JI, Silva M, Zhang J, Tranquilli GE, Santa-María GE (2022) A genome-wide association study unveils key chromosome regions involved in determining sodium accumulation in wheat under conditions of low potassium supply. Journal of Plant Physiology 275:153739. https://doi.org/10.1016/j.jplph.2022.153739 
  24. Peters Haugrud AR, Zhang Q, Green AJ, Xu SS, Faris JD (2022) Identification of stable QTL controlling multiple yield components in a durum × cultivated emmer wheat population under field and greenhouse conditions. G3 Genes|Genomes|Genetics jkac281. https://doi.org/10.1093/g3journal/jkac281 
  25. Prather S, Schneider T, Gaham Godoy J, Odubiyi S, Bosque-Perez NA, Rashed A, Rynearson S, Pumphrey MO (2022) Reliable DNA Markers for a Previously Unidentified, Yet Broadly Deployed Hessian Fly Resistance Gene on Chromosome 6B in Pacific Northwest Spring Wheat Varieties. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.779096 
  26. Rivera-Burgos LA, Brown-Guedira G, Johnson J, Mergoum M, Cowger, C (2022) Accounting for heading date gene effects allows detection of small-effect QTL associated with resistance to Septoria nodorum blotch in wheat. PloS one 17(5) e0268546.
  27. Rooney TE, Kunze KH, Sorrells ME (2022a) Genome-wide marker effect heterogeneity is associated with a large effect dormancy locus in winter malting barley. The Plant Genome:e20247. https://doi.org/10.1002/tpg2.20247 
  28. Rooney TE, Sweeney DW, Sorrells ME (2022b) Time series barley germination is predictable and associated with known seed dormancy loci. Crop Science 62:100–119. https://doi.org/10.1002/csc2.20638 
  29. Sandhu KS, Merrick LF, Sankaran S, Zhang Z, Carter AH (2022) Prospectus of Genomic Selection and Phenomics in Cereal, Legume and Oilseed Breeding Programs. Frontiers in Genetics 12. https://doi.org/10.3389/fgene.2021.829131 
  30. Sandhu KS, Mihalyov PD, Lewien MJ, Pumphrey MO, Carter AH (2021) Genomic Selection and Genome-Wide Association Studies for Grain Protein Content Stability in a Nested Association Mapping Population of Wheat. Agronomy 11:2528. https://doi.org/10.3390/agronomy11122528 
  31. Sandhu KS, Patil SS, Aoun M, Carter AH (2022) Multi-Trait Multi-Environment Genomic Prediction for End-Use Quality Traits in Winter Wheat. Frontiers in Genetics 13. https://doi.org/10.3389/fgene.2022.831020 
  32. Sandro P, Kucek LK, Sorrells ME, Dawson JC, Gutierrez L (2022) Developing high-quality value-added cereals for organic systems in the US Upper Midwest: hard red winter wheat (Triticum aestivum L.) breeding. Theor Appl Genet. https://doi.org/10.1007/s00122-022-04112-0 
  33. Sweeney DW, Kunze KH, Sorrells ME (2022) QTL x environment modeling of malting barley preharvest sprouting. Theor Appl Genet 135:217–232. https://doi.org/10.1007/s00122-021-03961-5 
  34. Sweeney DW, Rooney TE, Sorrells ME (2021) Gain from genomic selection for a selection index in two-row spring barley. The Plant Genome 14:e20138. https://doi.org/10.1002/tpg2.20138 
  35. Sweeney DW, Rooney TE, Walling JG, Sorrells ME (2022) Interactions of the barley SD1 and SD2 seed dormancy loci influence preharvest sprouting, seed dormancy, and malting quality. Crop Science 62:120–138. https://doi.org/10.1002/csc2.20641 
  36. Taagen E, Jordan K, Akhunov E, Sorrells ME, Jannink JL (2022) If It Ain’t Broke, Don’t Fix It: Evaluating the Effect of Increased Recombination on Response to Selection for Wheat Breeding. G3 Genes|Genomes|Genetics jkac291. https://doi.org/10.1093/g3journal/jkac291 
  37. Venegas J, Guttieri MJ, Boehm Jr. JD, Graybosch R, Bai G, St. Amand PC, Palmer N, Hussain W, Blecha S, Baenziger PS (2022) Genetic architecture of the high-inorganic phosphate phenotype derived from a low-phytate mutant in winter wheat. Crop Science 62:1228–1241. https://doi.org/10.1002/csc2.20738 
  38. Wu J, Qiao L, Liu Y, Fu B, Nagarajan R, Rauf Y, Jia H, Yan LL (2022) Rapid identification and deployment of major genes for flowering time and awn traits in common wheat. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.992811 
  39. Xu Y, La G, Fatima N, Liu Z, Zhang L, Zhao L, Chen MS, Bai G (2021) Precise mapping of QTL for Hessian fly resistance in the hard winter wheat cultivar ‘Overland.’ Theor Appl Genet 134:3951–3962. https://doi.org/10.1007/s00122-021-03940-w 
  40. Zhang G, Martin TJ, Fritz AK, Li Y, Seabourn BW, Chen RY, Bai G, Bowden RL, Chen M-S, Rupp J, Jin Y, Chen X, Kolmer JA, Marshall DS (2022) Registration of ‘KS Hamilton’ hard red winter wheat. Journal of Plant Registrations 16:73–79. https://doi.org/10.1002/plr2.20190 
  41. Zhang J (2022) Check CRISPR editing events in transgenic wheat with next-generation sequencing. In: Wani SH, Kumar A (eds) Genomics of Cereal Crops. Springer US, New York, NY, pp 95–106
  42. Zhang J, Gill HS, Brar NK, Halder J, Ali S, Liu X, Bernardo A, St. Amand P, Bai G, Gill US, Turnipseed B, Sehgal SK (2022) Genomic prediction of Fusarium head blight resistance in early stages using advanced breeding lines in hard winter wheat. The Crop Journal. https://doi.org/10.1016/j.cj.2022.03.010 
  43. Zhang J, Gill HS, Halder J, Brar NK, Ali S, Bernardo A, St. Amand P, Bai G, Turnipseed B, Sehgal SK (2022) Multi-locus genome-wide association studies to characterize Fusarium Head Blight (FHB) resistance in Hard Winter Wheat. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.946700 
  44. Zhang L, Xu Y, Chen M-S, Su Z, Liu Y, Xu Y, La G, Bai G (2022) Identification of a major QTL for Hessian fly resistance in wheat cultivar ‘Chokwang.’ The Crop Journal 10:775–782. https://doi.org/10.1016/j.cj.2021.08.004 
  45. Zhang XY, Jia HY, Li T, Wu JZ, Nagarajan R, Lei L, Powers C, Kan CC, Hua W, Liu ZY, Chen C, Carver BF, Yan LL (2022) TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 376:180–183. https://doi.org/10.1126/science.abm0717 
  46. Zhao L, Ge W, Lyu Z, Xu S, Xu Y, Bernardo A, Zhang Q, Xu S, Wang H, Kong L, Bai G (2022) Development and validation of diagnostic markers for the wheat Fusarium head blight resistance gene Fhb7. Crop Science 62:1903–1911. https://doi.org/10.1002/csc2.20754 
  47. Zhao L, Su P, Hou B, Wu H, Fan Y, Li W, Zhao J, Ge W, Xu S, Wu S, Ma X, Li A, Bai G, Wang H, Kong L (2022) The Black Necrotic Lesion Enhanced Fusarium graminearum Resistance in Wheat. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.926621